Automechanika 2022

•••3••• Innovationen Magnets are valuable components. Although functional magnet recycling methods have been developed in recent years, they have not yet been applied in practice and magnets continue to be melted down into steel scrap. Researchers at the Fraunhofer Research Institution for Materials Recycling and Resource Strategies IWKS provide good arguments for why this should change in the future. Their “FUNMAG” project demonstrates that recycled magnets can be used to power engines in the e-mobility sector, without any loss of power. It also shows that establishing a value chain for large-scale magnet recycling will pay off. The world is betting on electromobility. This sector is seeing continual growth while also gaining political significance as part of the energy transition. The German federal government, for example, plans to approve seven to ten million electric vehicles for use in Germany by 2030. There’s one component that is simply essential for an electric motor to function properly – a neodymium-based magnet (also known as an Nd-Fe-B or a highenergy permanent magnet). They are currently the most powerful magnets available on the market and account for around half of the costs of the motor, containing, as the name suggests, rare-earth elements including neodymium or dysprosium. The most significant supplier for rare-earth elements is China, which meets over 90% of the global demand while mining under critical conditions. The mining releases poisonous byproducts which can pollute the groundwater if not handled correctly, resulting in harm to both people and nature. In spite of the expensive and problematic production process, magnets are usually simply heaped on the scrap pile at the end of their useful life and melted down together with scrap steel. And this continues to happen despite the availability of proven functional magnet recycling methods. The scientists at the Fraunhofer Research Institution for Materials Recycling and Resource Strategies IWKS, in Hanau, want to close the gap between theory and practice with their “functional magnet recycling for sustainable e-mobility” project, “FUNMAG” for short. Sponsored by the Hessen Agentur, the research team aims to prove that electric motors that use recycled magnets can generate the same power as those using original new magnets and that, therefore, commercial recycling at large scale is a viable endeavor. Working with “a real mixed bag” For the corresponding experiments, the Fraunhofer IWKS procured, among other things, an electric bike, electric scooter and a hoverboard. Konrad Opelt, Project Head and material scientist explains: “First of all, we looked at the characteristics of the electric motors in each of the new vehicles to determine the relevant key data we would later use to compare the power of the motors with recycled magnets.” The electric vehicles form the framework for the project. The key part, however, is the work with the scrap magnets. These were procured by the ton from existing industry partners and vary greatly in terms of power, type and condition. “It was extremely important to us to build a realistic case,” Opelt explains. “If scrap dealers decide to separate the magnets from engines that have been disposed of, it will generally be a real mixed bag of various magnets, the precise characteristics of which nobody is sure of. Therefore, our aimwas to show that the recycling process can also cope with undefined base materials, with these unknowns in the process. And nobody has done this before us.” Making new from old For years, teams at the Fraunhofer IWKS have been working on the production and recycling of magnets. More sustainable e-mobility Magnet recycling pays off Old magnets can differ greatly in type and condition, but all of them can be recycled the same way Foto: Fraunhofer IWKS Read more on page 4

RkJQdWJsaXNoZXIy NjM5MzU=