electronica 2018
•••8••• Innovationen Messehighlight Intelligenter Stecker macht Industrie 4.0 zuverl ssiger Im Auto sind elektrische Steckverbindungen für Daten- und Leistungs- übertragung unerlässlich. In der vernetzten Produk- tion ist die Anschlusstech- nik die Hauptschnittstelle zwischen Maschinen, Steuerungen und EDV. Doch selbst regelmäßige Inspektionen bieten kei- nen hundertprozentigen Schutz vor plötzlichen Defekten. Typische De- gradationsursachen an Steckern durch Alterung der Materialien sind damit eintretende Undichtigkei- ten, Feuchtigkeit, Kriechströme oder Leistungsein- bruch. Diese Phänomene sind prinzipiell elektrisch detektierbar, bevorstehende Ausfälle im Betrieb lie- ßen sich so erkennen oder sogar vorhersagen. Ein in- telligenter Steckverbinder mit integrierten miniaturi- sierten elektronischen Sensorsystemen zur Erfassung des Energieverbrauchs, fehlerhafter Zustände, der Temperatur etc. könnte die schleichende Degradation von Steckverbindern messbar machen. Forscher am Fraunhofer EMFT haben zusammen mit Industriepart- nern einen Demonstrator eines solchen intelligenten Steckers entwickelt. Ein direkt in der Steckverbindung integriertes miniaturisiertes Sensorsystem erfasst die aktuelle Temperatur und den Stromfluss und über- trägt die Messdaten drahtlos an ein mobiles Endgerät. Steckverbindung für automobile Anwendun- gen Foto: Fraunhofer EMFT / Bernd Müller RFID antennas on toasted bread or potatoes Researchers have developed new graphene laser technique that opens door for edible electronics E lectronics, the lifeblood of the modern world, could soon be part of our daily diet. Scientists report that they have developed a way to write graphene patterns onto virtually any surface includ- ing food. They say the new tech- nique could lay the groundwork for the edible electronics capa- ble of tracing the progression of foods from farm to table, as well as detecting harmful organisms that can cause gastric distress. Graphene is composed of a single layer of carbon atoms arranged in a honeycomb pattern. It is stronger than steel, thinner than a human hair and more conduc- tive than copper, making an ideal building block for the next gener- ation of compact, smart electron- ics. Several years ago, James M. Tour and colleagues heated the surface of an inexpensive plastic with a laser in air to create some- thing called laser-induced gra- phene (LIG). LIG is a foam made out of tiny cross-linked graphene flakes. The process can embed or burn patterns that could be used as supercapacitors, radio frequen- cy identification (RFID) antennas or biological sensors. Based on these results, the researchers the- orized that any substance with a reasonable amount of carbon can be turned into graphene. Tour’s team sought to burn LIG into food, cardboard and several other everyday, carbon-based materials. The researchers used a single la- ser pulse to convert the surface layer of the target substance into a disorganized jumble of atoms called amorphous carbon, more commonly known as black soot. Then, they conducted multiple laser passes with a defocused beam to convert the soot into graphene. By defocusing the la- ser beam, the researchers could speed up the conversion process. And unlike previous LIG process- es, the graphene conversions conducted in these experiments were done at room temperature without the need for a controlled atmosphere box. Overall, the process demonstrated that LIG can be burned into paper, card- board, cloth, coal, potatoes, co- conuts, toasted bread and other foods. The researchers say these results suggests that food items could eventually be tagged with RFID antennas made from LIG that could help to track where a food originated, how long it’s been stored and how it got to the dining table. In addition, they suggest that LIG sensors could be used to uncover E. coli and other harmful organisms lurking in sal- ads, meats and other foods. A new laser technique that “writes” graphene onto toasted bread, potatoes and other foods could lead to the development of edible electronics. Photo: Jeff Fitlow / Rice University
Made with FlippingBook
RkJQdWJsaXNoZXIy NjM5MzU=