sps ipc drives 2017

•••8••• Innovationen M any manufacturing jobs re- quire a physical presence to operate machinery. But what if such jobs could be done remotely? Researchers fromMIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) presented a virtual-reality (VR) system that lets you teleoperate a robot using a headset. The system embeds the user in a VR control room with multiple sensor displays, making it feel like they are inside the robot’s head. By using gestures, users can match their movements to the ro- bot’s to complete various tasks. “A system like this could eventu- ally help humans supervise robots from a distance,” says CSAIL post- doctoral associate Jeffrey Lipton, who was lead author on a related paper about the system. “By tel- eoperating robots from home, blue-collar workers would be able to telecommute and benefit from the IT revolution just as white-col- lar workers do now.” The researchers even imagine that such a system could help employ increasing numbers of jobless video-gamers by “game- ifying” manufacturing positions. The team demonstrated their VC control approach with a human- oid robot, but said that the ap- proach can work on other robot platforms and is also compatible with other headsets. Lipton co- wrote the paper with CSAIL di- rector Daniela Rus and research- er Aidan Fay. They presented the paper at the IEEE/RSJ Interna- tional Conference on Intelligent Robots and Systems (IROS) in Vancouver. How it works There have traditionally been two main approaches to using VR for teleoperation. In a “direct” mod- el, the user’s vision is directly cou- pled to the robot’s state. With these systems, a delayed signal could lead to nausea and head- aches, and the user’s viewpoint is limited to one perspective. In the “cyber-physical” model, the user is separate from the robot. The user interacts with a virtual copy of the robot and the environ- ment. This requires much more data, and specialized spaces. The CSAIL team’s system is half- way between these two methods. It solves the delay problem, since the user is constantly receiving visual feedback from the virtual world. It also solves the cyber- physical issue of being distinct from the robot: once a user puts on the headset and logs into the system, they will feel as if they are inside the robot’s head. The system mimics the “homun- culus model of mind” – the idea that there’s a small human inside our brains controlling our ac- tions, viewing the images we see and understanding them for us. While it’s a peculiar idea for hu- mans, for robots it fits: “inside” the robot is a human in a control room, seeing through its eyes and controlling its actions. Using controllers, users can interact with controls that appear in the virtual space to open and close the hand grippers to pick up, move, and retrieve items. A user can plan movements based on the distance between the arm’s location marker and their hand while looking at the live display of the arm. To make these movements possi- ble, the human’s space is mapped into the virtual space, and the virtual space is then mapped into the robot space to provide a sense of co-location. The sys- tem is also more flexible com- pared to previous systems that require many resources. Other systems might extract 2D infor- mation from each camera, build out a full 3D model of the envi- ronment, and then process and redisplay the data. In contrast, the CSAIL team’s ap- proach bypasses all of that by taking the 2D images that are displayed to each eye. (The hu- man brain does the rest by auto- matically inferring the 3D infor- mation.) To test the system, the team first teleoperated the robot to do simple tasks like picking up screws or stapling wires. They then had the test users teleoper- ate the robot to pick up and stack blocks. Users successfully com- pleted the tasks at a much higher rate compared to the “direct” model. It feels like being inside the robot’s head Virtual Reality system could make it easier for factory workers to telecommute VR system from Computer Science and Artificial Intelligence Laboratory could make it ea- sier for factory workers to telecommute. Photo: Jason Dorfman, MIT CSAIL Besuchen Sie Wieland Electric in Halle 9, Stand 340 Vielseitig und kommunikativ samos ® PRO COMPACT Integrierte Ethernet-Protokolle und zusätzliche Gateway-Module für die Sicherheitssteuerung samos ® PRO COMPACT . Die Ethernet-fähigen Steue- rungen der samos ® PRO COMPACT Familie verfügen jetzt über drei vollständig integrierte Industrieprotokolle (PROFINET IO, EtherNet/IP und Modbus TCP). Der große Vorteil für den Anwender ist, dass kein zusätzliches Modul für die PROFINET IO-, Ether- Net/IP- oder Modbus TCP- Kommunikation benötigt wird und damit Platz und Kosten im Schaltschrank eingespart werden. Auch für die indus- triellen Feldbusse PROFIBUS DP, CAN-open und EtherCAT stehen entsprechendeGateway- Module zur Verfügung. Die Pa- rametrierungen der Kommuni- kation erfolgen über samos ® PLAN 6, dem grafischen Pro- grammiertool von Wieland Electric. Dank dem intuitiven Gateway-Konfigurationsmenü wird die Projektierung der je- bereits eine Vielzahl von Sicherheitsapplikationen ab. So lassen sich Sicherheits- lösungen vereinfachen und insbesondere der (Logistik-) Aufwand deutlich reduzieren. Bei Bedarf lässt sich samos ® PRO COMPACT modular auf bis zu 168 sichere Ein- und Ausgänge erweitern – damit ist auch die sichere Automa- tisierung von großen Maschi- nen und Anlagen möglich. Das Gehäuse der samos ® PRO COMPACT Module mit einer Hutschienen-Verrastung haben jetzt auch alle samos ® PRO Erweiterungsmodule – für eine bessere Montage bzw. Demontage. Dank einer Schalt- weiligen Netzwerkintegration vereinfacht. Kleines Modul – große Leistung samos ® PRO COMPACT ist nur 45 mm breit und deckt leistung von 4A an jedem einzelnen Ausgang und einem Temperaturbereich von -25°C bis +65°C ist samos ® PRO COMPACT universell einsetz- bar. Anzeige

RkJQdWJsaXNoZXIy NjM5MzU=